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A  METHOD FOR DETERMINING THE CHARACTERISTIC  FUNCTIONS 

ASSOCIATED WITH  THE AEROELASTIC  INSTABILITIES 

OF HELICOPTER ROTORS IN FORWARD  FLIGHT 

By Vincent J. Piarulli  and  Richard P. White, Jr. 
ROCHESTER  APPLIED  SCIENCE  ASSOCIATES,  INC. 

SUMMARY 

A  method  has  been  developed for determining the  characteristic 
functions  (modal  content) of aeroelastic  instabilities  experienced 
by  helicopter  rotors  in  forward  flight. The method  assumes  a know- 
ledge of the characteristic  values  which characterize'the frequency 
and growth  rate of an unstable  mode of a  helicopter  rotor  in  a  given 
flight  condition.  Characteristic  values  may  be  found  from  the  pre- 
viously  developed  program  (Reference 1) which  is  capable of analyzing 
a  coupled  set of linear,  second-order  differential  equations  with 
periodically  varying  coefficients. 

The necessary  formulation was programmed  for  the  case  of  a 
system  with  three  degrees of freedom.  Calculations were carried 
out for  comparison  with  available  experimental  data. 

INTRODUCTION 

An  analysis  of  the  aeroelastic  stability of a  helicopter  rotor 
in  forward  flight  was  carried out in  Reference 1. In that  study  a 
computer  program  was  developed  which  is  capable of determining  the 
characteristic  values of a  given  set  of  coupled,  linear,  second- 
order  differential  equations  with  periodically  varying  coefficients. 

Stability  properties  determined  by  that  program  consist  solely 
of the  real  and  imaginary  parts of the  system  characteristic  values. 
A  knowledge of these  quantities  alone  is  akin  to  knowing  the  natural 
frequencies,and rates of exponential  growth  or  decay  associated with 
each of the  natural  modes  without  knowing  the  actual  modal  content. 

The  study  described  herein  was  directed at developing  the  charac- 
teristic  functions  (modal  content)  associated  with  the  stability of a 
helicopter  rotor  in  forward  flight.  Characteristic  functions  clearly 
give  an  indication as to  the  degrees of freedom  excited in a  particu- 
lar  unstable  mode.  More  importantly,  however,  a  close  inspection 
of the  characteristic  functions  should  yield  insight  towards  the 
redesign  required to eliminate  an  instability. 



The.method developed  here  relies  heavily on the  basic  formula- 
tion  and  computer  program  previously  developed in Reference 1. 
Therefore,  the  reader is referred to Reference 1 for a more  com- 
plete  descripti.on of the  fundamentals of the general  approach  and 
to Appendix A of the present  report  for  a  corrected  listing of 
that  computer program. 

SYMBOLS 

a mn' bmn dimensionless,  periodically  varying  coefficients 
occurring  in  the  basic  set of differential  equa- 
tions 

[a1  [bl matrix  form of periodically  varying  coefficients 
a  and  bmn mn 

[A] (k) [B] (k) arrays of Fourier  coefficients  required  to  repre- 
sent  the  matrices [a]  and [b] in complex  Fourier 
series 

[AI (k) [I31 (k) complex  arrays  related  to  the  quantities [AI (k 1 

and [B] (k) through  Eqs. (14) . 
N 

Nf 

number of degrees of freedom of the  elasto- 
mechanical  system 

number of Fourier  components  retained in Fourier 
representation of characteristic  functions 

columns of Fourier  coefficients of the  charac- 
teristic  functions 

(91 (k) columns  related  to Cp1 (k) through  the  change  in 
index  defined  by E q .  (13) 

R rotor radius, m 

v€ magnitude of free-stream  velocity  (aircraft 
forward  speed), m/s 

array  formed  by  computer  program  in  order  to 
solve  for  characteristic  functions 

{XI large  column  containing  all of the Cp1 (k) 

z nondimensional  quantity  corresponding  to  time 
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'n 

h 

A R  

5 
!J 

R 

displacement  of  the n- coupled  mode  of  free th 
vibration of the  elasto-mechanical  system 

column  form  of cn 

system  characteristic  value 

real part of h 

imaginary  part of, X 

advance radio, nondimensional vf 

characteristic  function  corresponding to m- th 
generalized  coordinate 

column  representation  of 4),(z) 

rotor  rotational  speed, rad/s 

natural  frequency of the k- coupled  mode of free 
vibration of the  rotating  system,  rad/s 

th 

DEVELOPMENT OF THE  EQUATIONS FOR DETERMINING 
CHARACTERISTIC  FUNCTIONS 

The  perturbation  equations of motion of a  rotor  blade  in  for- 
ward  flight  were  shown  in  Reference (1) to  be  expressible  in  the 
following  form. 

d2 5, - +  (m=l, 2,. . .N) 
dz n= 1 

where: z is  a  dimensionless  indicator  of  time  defined  by 
z = Rt/2 

the en's are  the  N  generalized  coordinates  defining  the 
motions of the  dynamic  system 

the amls and bm's  are  periodic  functions of z such  that 

a (z + TI) = a ( z )  mn mn 
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The .theory of Floquet (Reference 2) can be used to show  that 
a  solution to Eqs. (1) must  be of the  form 

where X is a  complex  constant  and $,(z) is  periodic  with  a  period 
IT. The differential  system, Eq.(l), is of order 2N, so there  are 
2N linearly  independent  solutions.  Hence,  there  are 2N values of 
A and 2N associated  sets of N functions $,, defining  solutions  to 
Eqs. (1) . 

The stability of the  system  is  determined  by  the 2N values of 
the  complex  constant X. If  any one of these  has  a  positive  real 
part  then  the  motion  following  an  initial  disturbance  diverges  with 
increasing  time  and  the  system is unstable. If the  real  part of 
X is  negative,  the  system is said  to be stable. 

In Reference 1, a  method  was  developed  whereby,  for  a  given 
system,  all  the  characteristic  values  for A may  be  calculated. A 
computer  program was developed  to  implement  the  method of Reference 
1 for  the  case of three  degrees of freedom (N=3). 

The  specific  objectives of the  study  described  herein  were  to 
develop  the  means  for  determining,  for  a  given X ,  the  relative  con- 
tribution  of  each  generalized  coordinate cm to  the  motion.  Thus 
for  each  characteristic  value of X it is required  to  calculate  the 
corresponding  characteristic  function $I (z) which  appears  in m 
Eq. (2). 

In formulating  the  scheme  for  obtaining  characteristic  func- 
tions  it has been  found  that  the  use of matrix  algebra  simplifies 
the  representation of the  equations.  Therefore,  Eqs.(l)  and (2) are 
rewritten  below  in  matrix  form. 

The matrix  equation  counterpart of Eqs. (1) and (2) are  given 
by 

d - d2 CE.1 + [a1 - { < I  + P I  I C )  = ( 0 1  ( 3 )  
dz dz 

where : 
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and 

[a]  and [b] are N by N square  matrices and' { < . I  is a  column of N 
elements. 

Since [a]  and  [b] are  periodic  they  may  be  expressed  in  a 
Fourier  series  as follows: 

m 

[bl = 1 [Bl (k)  e2ikz 

Since { $ I  ( z )  is  also  periodic  with  period IT it  may  also  be  repre- 
sented by a  complex  Fourier  series. Thus, 

Substituting Eq. (7) into Eq. ( 4 )  yields: 

m 

I C  1 = 1 {PI 
(k)  ,2ikz+Xz 

Upon  differentiating  the  above  expression  for I C ) ,  substituting  into 
Eq.(3), and  then  grouping  and  setting  equal to zero  the  coefficients 
of like  powersof  e2iz,  the  following  equation  is  obtained. 

n=0,+1,+2,. . . + m  

( 9 )  
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Since Eq.(9) is  valid for all positive  and  negative  integer  values 
of n, an  infinite  number of homogeneous  matrix  equations  are  theo- 
retically  available to arrive  'at  the  relative  values  for: 

In practice it is necessary to deal with a  finite  number of 
equations.  Therefore Eq.(9) is  written for values of 

n = 0,+1,+2,+3 ... Nf 

where  NF is some  finite  number  such  as  five or ten.  It  should  be 
noted,  however,  that Nf is  equal  to  the  number of Fourier  components 
which  are  solved for in  the  Fourier  representation of { $ ) ( z ) .  
Therefore Nf  would  probably  be  no  greater  than  half  the  number of 
Fourier  components  calculated  for  the  arrays of periodically  vary- 
ing  functions [a]  and  [b] which  occur in Eqs. ( 3 )  , ( 5 )  , and (6) . 

Since  a  homogeneous  set of (NxN  equations  is  being  dealt f 
with,  one of the  unknowns  is  arbitrary.  Generally  speaking,  the 
elements  in Cp) would  be  non-zero.  Therefore, one of these  ele- 
ments  may  be  arbitrarily  set  equal  to 1. 

Unfortunately,  while Eq.(9) is  a  valid  and  concise  equation 
governing  the  relative  contributions  of  the  generalized  coordinates 
to  the  total  motion of the  system,  a  problem  does  arise  in  program- 
ming  this  equation. The zero  and  negative  values of n  and  k  occurring 
in Eq.(9) cause  difficulty  when  programming  in  Fortran.  This  diffi- 
culty  also  had  to  be  overcome in Reference 1. Since  the  program 
being  described  in  this  report  must  be  compatible  with  that  developed 
in  Reference 1, some  further  manipulations of Eq.(9)  are  required 
in  order to arrive at equations  suitable  for  programming in Fortran. 

Firstly, Eq.(9) may  be  rewritten as follows  where  now  the  govern- 
ing  equation  consists  only of a  finite  number of terms. 

N -n f 

k= 1 
+ 1 [(X + 2in + 2ik) [A] (-k) + [Bl (-k) 1 {PI (n+k)= { O )  

n=O,+1,+2, ...+ N f J 
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N o w ,  since  the  periodically  varying  functions [a] and [b] occurring 
in Eq. ( 3 )  are  real  matrices (Reference 1) it can. be shown from 
Eqs. (5) and ( 6 )  that: 

and 

whej re the  bar  indicates a complex  conjugate. 

The  difficulty of having  n  assume  zero  and  negative  integer 
values  is  removed by letting 

n = m  

and  defining  (2Nf + 1) vectors 
follows: 

- N f - l  

(each  containing  N  elements) as 
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Finally,  after  making  the  definitions: 

and  then  utilizing Eqs. (11) , (121, (13) , and (14) in Eq. (10) , the 
following  equation  results. 

+ [ (X+2i  (m-Nf-l)) [ I ]  + (X+2i  (m-Nf-l)) [ A I  ( I )  + 181 ] ( q )  (m) 

2Nf+ 1 

k=m+ 1 
+ 1 [ (X+2i  (k-Nf-l)) [AI (k-m+l) + [ R l  (k-m+l) 1 I q l ( k )  = ( 0 1  

m=1,2,3, ... 2Nf+l 

The  quantities [AI ( j )  and [ B J  ( j )  correspond  exactly  to  variables 
which  are  defined  and  may  be  computed  in  the  computer  program 
developed  in  Reference 1. 

Eq.(15) may  be  written  as  one  single set of  homogeneous  equa- 
tions  as  follows: 

8 



where : 

0 

Using  the  simplest  possible  shorthand  notation,  Eq.(16)  may  be 
expressed  by: 

where : 

Ixl = I ;;;(2) I is a column of N(2Nf+l) 
elements 

(2Nf+l 1 

and [TI is  the  large  N(2Nf+l) by  N(2Nf+1)  array  constructed  from 
[Rm,kI  submatrices. 
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Given  a  characteristic  value X, the [AI'S and  [Bl's,'and  the 
number  Nf of Fourier  components  desired  in  the  representation of 
the characterbtic function, it shduld now be  clear  how  the  matrix 
[TI is  constructed. In order to solve  .for  the  characteristic  func- 
tions, it is  necessary  to  fix  one of the elements  of'(x1  and  then 
solve for  the  remaining elenients. 

Consider  for  example,  the  case  of  a  three  degree of freedom 
system  for  which N = 3 .  If the  characteristic  functions  are  normal- 
ized with  respect to the  zeroth  order  Fourier  component  of  the 
second  generalized  coordinate,  then  referring  to  Eq.(8)  the  second 
of  the  three  elements  in {p) is to  be  set  equal  to 1. 

According  to  Eq. ( 1 3 ) ,  

Thus, if the Nf is  say 5, then  the  second  element  in  {q) ( 6 ) ,  or 
equivalently  the 17- element  in  the  vector {x)  is  to  be set  equal 
to 1. 

th 

In  the  most 
be 

general  case  consider  the  matrix  equation (18) to 

\ 

0 

where : (NN~+I) indicates  the  element  which  is  to  be  equal  to 1 
in  the {x) column, 

I  indicates  a  normalization  with  respect  to  the I- 
th 
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It can  then  be  easily  shown  that  the  matrix  equation  required to 
solve  for  the  remaining x's is given by 

X1 

X NNf +I- I 

XNNf +I+ 1 

x,( Nf+l) 

= -  

Note  that  Eq.(21)  differs  from  Eq.(20)  in  that  the row and  column  of 
[TI which  contain  the  element T 
a  r.ight-hand  side  of the  equation  has  been  formed  from  the  negative 
of the  removed  column  minus  that  element. Eq.(21) may  be  solved  in 
a  straightforward  manner  for  the  x's  or  equivalently  by  the  charac- 
teristic  functions 

NNf+I,NNf+I have  been  removed  and 

where: k = 0,?1,+2. ..fN f .  

DESCRIPTION OF COMPUTER  PROGRAM 

The computer  program  developed  for  this  study was coded  directly 
from  the  formulation  described  above.  Since  this  program  was  intend- 
ed  to  be  used in conjunction  with  the  program  developed  in  Reference 
1, the  number of degrees of freedom  treated in this  study  was re- 
stricted  to  three  (N=3) as in the  characteristic  value  program. 

The main  inputs  to  this  program  are:  the  characteristic value 
(X); the number of Fourier  coefficients  desired  (Nf);  and  the Fourier 
components of the  periodically  varying  coefficients in the  original 
equations of motion ( [ A I ' S  and [ S I ' S ) .  The latter  quantities  are 
computed in a  special  subroutine  which was also  used in the  charac- 
teristic  value  program of Reference 1. The X's, of course, are  the 
characteristic  values  which  are  the  output of the  Reference 1 pro- 
gram. The quantity  Nf is arbitrary  except  for  the  practical  con- 
siderations  that  it  is  limited  by  the  number of Fourier  components 
(the [ A I ' S  and [SI'S available)  and  the  computer  storage  capacity. 
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Also provided as an input  quantity is an index  which  indicates how 
the  characteristic  functions  are  to  be  normalized. 

The input  quantities  are  manipulated  by  programming  logic  that 
closely follows the  formulation  described in the previous  section 
of this  report in order to construct the large [TI array (Eq.20). 
The operations of removing  the  appropriate row and  column  are  per- 
formed  and the resulting'set of linear  algebraic  equations  are  solved 
for  the  characteristic  functions. 

The functions  are  printed  out with appropriate  comments  for 
identification  purposes. 

A flow  diagram  paralleling  the  above  description  and  the  pre- 
viously  described  formulation  is  provided  in  Figure I, and  a  listing 
of the  associated  computer  program  is  given  in  Appendix B. 

Fourier  components of periodically 
varying  coefficients ( [ A ]  and [B]  

S 
Construction 

of 
Characteristic  value (X) [TI array 

Number of Fourier  components of 
characteristic  functions  desired (Nf) I 
Generalized  coordinate set  equal  to 
unity  in  normalization process (I) 

J 
Construction of a  set 
of nonhomogeneous 
linear  algebraic 
equations  for  the 
characteristic 

functions 

Printout of characteristic  value 
and  corresponding  characteristic  characteristic 
functions 

Solution  for 

functions 

Figure 1. Basic  flow  diagram  for  characteristic 
modal  functions 
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APPLICATION OF THE METHOD 

The computer  program  developed in Reference '1 for  predicting 
the  characteristic  values of a  coupled  set of linear,  second-order 
differential  equations with periodically  varying  coefficients was 
used i.n conjunction with the 'computer pmgram that was developed 
herein  to  determine th& stability  characteristi,cs of a  model  heli- 
copter  blade in hover and  forward  flight. The model  helicopter 
rotor  blade for which experimental  fiutter  results  are  presented 
in  References' 3 and 4 had  a  single  blade with a  radius of four 
feet  and with a  flapping hinge through  the  axis of rotation. The 
blade  had  a  constant  chord of 3.5 inches  and  a root cutout of 
6 inches. The blade was relatively  rigid in torsion,  but  the  con- 
trol  system was made  flexible, so the  primary  contributions  to  the 
blade  motions  derived  from  rigid-body  feathering,  flapping  motions 
and  deflections  in  the  first  flapwise  bending  mode. 

The  model  configuration  that  was  chosen  for  investigation  had 
a  ratio of the  nonrotating  first  uncoupled  flapwise  bending  fre- 
quency, W to  feathering  frequency G of 0 . 6 3  and  a  chordwise 

center of mass  at  the 42.5% chord  aft of the  leading  edge. 
91 0 0  

Determination of Model  Blade  Frequencies 

Since  the  experimental  flutter  data  presented in Reference 3 
was  not  supported  by  either  measured  or  computed  uncoupled  and 
coupled  mode  shapes  and  frequencies  for  the  model  blade  (needed for 
the  present  study),  they  had  to  be  determined. This was accom- 
plished  by  using  a  refined  rotor  blade  vibration  analysis,  Refer- 
ence 4 ,  in  conjunction with the  blade  data  reported  for  the  blade 
in  Reference 3 .  The  results of these  calculations  yielded  an  un- 
coupled  nonrotating  first  bending  frequency E of 7 5  rad/sec. 

The root  feathering  spring  was  then  adjusted so that the  first  non- 
rotating  feathering-torsion  mode  had  a  frequency Ge of 119.1 rad/ 

01 

0 

sec  in  order  that  a  frequency  ratio of of 0 .63  was obtained. 

Using  the  stiffness of the  feathering  spring  that was determined  by 
this  method, the coupled  nonrotating  and  rotating  vibration  modes 
were then  computed at various  rotational  speeds. A frequency  dia- 
gram  presenting  the  results of these  calculations is presented in 
Figure 2, and the  generalized  components of the  various  coupled 
modes at the  blade  tip are given in Table I for  a few of the  rota- 
tional  speeds at which  calculations  were  conducted. 
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Figure 2. Coupled  natural  frequencies  versus  rotor  speed 
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Coupled 
Mode 

-~ .... , ~ . - " 

First 

Second 

Third 

TABLE I 

GENERALIZED  COMPONENTS OF COUPLED  MODES 

Component 
~~ - ~- ~- . . 

~~~~ 

Flap-Bending 
Feathering-Torsion 

Flap-Bending 
Feathering-Torsion 

Flap-Bending 
Feathering-Torsion 

Rotational  Speed '(rad/.sec) 7 . .  

I 

- 
0.0738 - 1.0 

1 .0  

. 8.77 9 . 0 1  
1 .0  1 . 0  

-1.93 - 1 . 8 1  
1 . 0  

I 

1.0 
0.13 

1.0 

-2.1 - 2 . 0 1  
1.0 1 . 0  

0 .193  

8.46 8.62 
1 . 0  1 . 0  

I 

It should  be  noted  that  since  the  generalized  components  have 
been  normalized by  the  flap-bending  deflection,  the  feathering- 
torsion  deflections  have  units of radian  per  unit of tip  bending 
deflection. 

The first  coupled  mode is primarily  a  flapping  mode  and  the 
second  and  third  coupled  modes  are  primarily  highly  coupled  bending- 
feathering  modes with the  third  mode  having  a  significantly  larger 
relative  feathering  motion  than  the  second  mode. 

Theoretical  Determination of Rotor 
Stability  Characteristics 

Using  the  first  three  coupled  modes of the  rotor  blade as 
generalized  coordinates,  the  characteristic  values and charac- 
teristic  functions  were  determined for various  rotor  speeds  at 
advance  ratios  of 0, 0.1, 0.2, and 0.3. The  characteristic  values 
and  characteristic  functions  that were determined  are  presented 
in  Table I1 and Table 111, respectively. In order to determine, 
at a  given  advance ratio, the  rotational  speed  at which the  rotor 
is neutrally stable,  the  real  part of the  characteristic  value  is 
plotted  versus  rotational  speed  and  the  rotation  speed  at  which 
the  real  part  vanishes is the  critical  speed.  Since  the real part 
of the  characteristic  value can be  considered to be  a  measure of 
the  system  damping ,(growth or  decay  rate)  the  effect of structural 
damping  can  be  easily  determined in much  the  same  manner as it is 
accomplished  for  fixed  wing  aircraft  through  plots of velocity 
versus  damping. 
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TABLE I1 

CHARACTER IS TI^ VALUES OF MODE WHICH BECOMES UNSTABLE 

Rotational Sp,a&d'  (.rad/sec) , . 

l J ,  

10 2.0 .1.8  1.5 

0 

4.20255.0i 2.430k56.4i  -0.525k59.7i - 0.3 
4.04253.5i 1.36Ok56.4i  -0.98Ok60.2i - 0.2 

2.50k54.1i -0.612+56.3i -1.19Ok56.3i - 0.1 

2.32+53.9i - -1.39Ok60.3i -1.74264.0i 

As noted in Table 111, the  characteristic  function 

23 I 1 8.0+50.2i 

at  each 
condition  has  contributions  from  all  the  coupled  modes  which  have 
been  normalized by the  value of the  second  coupled  mode.  The  rela- 
tive  magnitudes of the  various  modes in the  characteristic  function 
give  an  indication of the  primary  degrees of freedom  that  are 
present. For  example,  for  a  rotor  speed of 18 rad/sec  and  an  ad- 
vance  ratio of 0.10, the  first  coupled  mode  has  a  relative  ampli- 
tude of approximately  0.78,  the  second  1.0,  and  the third, 0.026. 
These  relative  orders of magnitude  indicate  that  the  rotor  oscilla- 
tory  motion  at  these  conditions is comprised  primarily of motions 
in  the  first  and  second  coupled  modes.  When  these  relative  ampli- 
tudes of motion  for  the  various  modes  are  applied  to  the  different 
coupled  degrees of freedom  to  determine  the  relative  amplitudes of 
the  primary  motions  (flap,  bending,  feathering),  the  results  indi- 
cate  that  the  mode of instability  is of a  highly  coupled  bending- 
feathering  type. 

Comparison of Theoretical and  Experimental  Results 

In order to put  the  theoretical  results in a  form  in  which 
they  could  be  compared with the  experimental  results of Reference 
3, the  characteristic  values  presented  in  Table I1 were  plotted 
versus  rotor  speed to determine  the  rotational  speed  at  which  the 
rotor  was  neutrally  stable. With the  critical  rotor  speed  deter- 
mined,  the  nondimensional  flutter  parameters were calculated  and 
are  presented in Table 1.V. When  the  theoretical  results  presented 
in Table IV were  compared  with  the  experimental data, it was  noted 
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0.20 

0.30 
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1 
2 
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1 
2 
3 

1 
2 
3 

1 
2 
3 

T 

TABLE I 11. 

CHARACTERISTIC  FUNCTIONS OF MODE  WHICH  BECOMES UNSTABLE 

~~ ~ ~ 

10 

-0.161+0.  0298i 
1.00 

-0.008+0.0036i 

Rotational Speed (rad/sec) 

15 

-0.4290r0.005i 

-0.0170+0.007i 

-0.4340+0.001i 

-0.0170?0.O07i 

-0.4490+O.O2Oi 

-0.0185+0.008i 

-0.4780+0.O48i 

-0.0210+0.O09i 

1.00 

1.00 

1.00 

1.00 

18 

-0.763+0.145i 
1.00 

-0.024+0.010i 

-0.760+0.205i 
1.00 

-0.025+0.0115i 

-0.756+0.294i 
1.00 

-0.027+0.014i 

20 

-1.020+0.33i 
1.00 

-0.027+0.011i 

-0.990tO.346i 
1.00 

-0.027+0.012i 

-0.980kO.489i 
1.00 

-O.O27+0,01Oi 

-0.865sO.48i 
1.00 

-0.029+0.017 

23 

-1.2400+1.13i 

-0.0326+0.015i 
1.00 



TABLE IV 

PREDICTED  ROTOR  PARAMETERS AT FLUTTER  BOUNDARY 

that  the  theoretical  results were extremely  conservative  in  that 
the  rotor  speed at which the  instability  boundary was predicted was 
only 59% of that which was  measured.  While  the  support  data  that 
was  presented  for the model in Reference 3 did  not  record  the  un- 
coupled  frequencies  associated  with  the  first  bending  mode  and 
the  first  feathering modes, it  was  determined  from  the  data  pre- 
sented  in  Reference 5 for  the  same  model,  that  the  first  non- 
rotating  uncoupled  flapwise  bending  mode  had  a  frequency E of 

8 3  rad/sec and-the first  nonrotating  uncoupled  feathering-torsion 
mode  had  a  frequency of We of 1 3 2  rad/sec. Since  the  correspond- 

ing  frequencies  that were calculated  during  this  program  using  the 
reported  mass-elastic  data  for  the  model were 75  rad/sec  and  119.1 
rad/sec, respectively,  a  direct  comparison of the  theoretical  and 
experimental  data was not  deemed  to  be  valid.  However,  on  the  basis 
of a  straight-line  interpolation  of  experimental  flutter  data  for 
w of 108 rad/sec  and 1 3 2  rad/sec  presented  in  Reference 5 for  the 

subject  model  in  the  hover  condition, it was estimated  that if the 
experimental  frequencies  reported  for  the  model  had  been  used  in 
the  theoretical  prediction,  the  theoretically  determined  rotor  speed 
would  be  approximately 1.24 times  those  predicted.  It  was  believed, 
therefore,  that  if  the  predicted  results were corrected  by  this  fac- 
tor  a  direct  comparison  could  be  made  wlth  the  experimental re- 
sults  presented  in  Reference 3 .  The theoretical  results  presented 
in Table IV were  thus  adjusted  to  account  for  this  difference  and 
are  presented in Table V. The results  presented  in  Table V are 

8 1  

0 

- 
8 0  
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TABLE V 

CORRECTED  ROTOR  PARAMETERS AT FLUTTER BOUNDARY 

compared  with  the  experimental  results  in  Figure 3 .  

As can be seen  from  the  results  that  are  plotted,  the  corrected 
theoretical  results  while  being  about 3 5 %  conservative,  indicate 
the  same  trend  with  advance  ratio  as do the  experimental  data. 
The  effect of a normal  amount of structural  damping  decreased  the 
degree of conservation  by  only 4 %  indicating  that  structural  damp- 
ing  was  not  the  reason  for  the  difference  between  the  predicted 
and  experimental  results. It is  believed  that  possible  reasons 
for  the  difference  between  the  theoretical  and  experimental  results 
are  tip  losses  and  a  significant  reduction  in  the  lift  curve  slope 
from  the  theoretical  value of 6 . 2 8  due  to  the  relatively  low 
Reynolds  number  at  which  the  model  tests  were  conducted. To deter- 
mine if this  could  possibly  be  the  reason  for  the  discrepancy  be- 
tween  the  theoretical  and  experimental  results,  it was assumed 
that  the  aerodynamic  forces  in  hover  were  reduced by 5 0 %  due to 
these  factors. The results  of  these  calculations  indicated  that 
the 3, /fl at hover  would  be 3.6 or approximately  the  same  value as 

determined by the  experimental  data.  While it is not  believed  that 
the  aerodynamic  forces  would be reduced  by  this  amount  due to 
Reynolds  number  and  tip loss effects,  the  results do indicate  that 
the  theoretical  and  experimental  results  would  probably be in much 
closer  agreement  if  the  effective  lift  curve  slope  associated  with 
the  model was used  in  the  theoretical  analysis. 

0 

Since  the  performance  characteristics were not measured  for  the 
flutter  model, an evaluation of the effective  lift  curve  slope  could 
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not be undertaken. For the obvi.ous  benefits  that  could  be  derived, 
it i s  suggested  that it might be 'invaluable  to  measure,  during  all 
scale  model  dynamic  tests', the performance  characteristics of the 
rotor so that  an  estimate of the effec'tive  lift  curve  slope  can be 
made  for use in theoretical  analyses  correlating  the  experimental 
results. 

CONCLUDING REMARKS 

The  results of the research program  conducted  herein  indicate 
that  a  reliable  method of predicting  the  characteristic  functions 
associated with rotor  instabilities has been  developed  once  the 
characteristic  values of the  instability  have  been  determined  by 
means  of  the  analysis  procedure  previously  developed. 

During  the  performance of the  effort  associated  with  this 
research  investigation,  it  again  became  apparent  that  there is a 
definite  need for a  reliable  and  well-documented  set of experi- 
mental  flutter  data.  It  is  believed  that  the  need  for  this  data 
is  urgent as, due to  the  rapid  growth in rotor  technology,  more 
instances of unexpected  and  unexplained  cases of rotor  instability 
will  probably  occur  more  frequently. In order to investigate  the 
reason  for  the  instabilities  and  determine  means  for  corrective 
action,  there is a  need  for  a  proven  method of analysis.  While 
it  is  believed  that  a  reliable  analysis  has  been  developed, it or 
any  other  analysis  procedure  cannot  be  assumed to be  quantitatively 
reliable  until  it  has  been  proven  to  be so by comparison  with  a 
well-documented  set of experimental  data. 
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APPENDIX A 

Listing of Computer  Program  for 
Determining  Characteristic  Eigenvalues 

(Update of Program  Listed  in  Reference 1) 
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55 

78 

9 1  
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AUMI12(MM,ND+l)=DYI9(MM) 
I F ( N P , E Q , l )  G O  T O  5 1  
AUMR12(MM+l,ND+l)=DYR9(MM) 
A U H 1 1 2 ( M M ~ l r N D + l ) = ~ O Y 1 9 ( M M )  
N D l V ( M t l + l ) = O  

5 1  N D I V ( M M ) = N U  
I F ( K E U ) 1 4 5 r P 4 5 r 5 7  

5 7  WR1TE(NQ,6656)UETR(l)r~ETI(l)rH 
6 6 5 6  F O H M A T ( l H O , 2 2 H ~ R E D I C T E D   C O N V E R G E N C E  G 2 0 , 8 , 7 H  REAL ,620101 

1 7H I M A G :  1 5 H  E V A L U A T E D  A T  G 2 0 1 8 )  
D E T I ( 4 ) = O g  

1 4 5   C O N T I N U E  
i 1 4 5   C O N T I N U E  

R E T U H N  
E N D  
S U B R O U T I N E   P H E ( N U , P C , N P )  

C I M P L I C I T   R E A L * ~ I ( A - H I O - Z )  

C P R E D I C T  THE CONVERGEED  VALUES  BASED ON T H E   L A S T   T H R E E  
C D E T t R M I N A N T S  
c R E A L * 8  K ~ K ~ , K ~ K ~ , M U I K ~ ~ K ~ ~ K ~  

D I M E N S I O N   P C ( 1 B )  

R E A L   K l , K 2 r K 3 r K 2 K l r K 2 K 3 , M U  
D S Q H T ( D ) = S U R T ( U )  

D A B S ( D ) = A B S ( D )  
D A T A N ( D ) s A T A N ( U )  
D C O S ( D ) = C O S ( D )  
D E X P ( D ) s E X P ( D )  
D L O b ( D ) = A L O G ( D )  
D L U G l O ( U ) = A L O G l O ( D )  
D S I b ( D ) = S I N ( D )  
D C O S H ( D ) = C O S H ( U )  
D S I N H ( D ) = S I N H ( D )  
D E L T A = , f l 0 0 0 1  
C l  = P C ( N D - 2 )  
C2 = P C ( N D - 1 )  
C 3  = P C t N D )  
K l z i V D - 2  
K 2  = N D - 1  
K 3  ND 
K 2 K 3 3   K 2 / K 3  
K 2 K l = K 2 / K l  

MU = ( C l - C 2 ) / [ C 2 - C 3 )  

D M A X l ( A , B , C ) = A M A X l ( A , R I C )  

C W R l T T t N  F ' O H  THE I N F I N I T E  D E T E R M I N A N T  S U B R O U T I N E  W I T H   A S Y M P T O T I C  

P ~ : 0 0 0 0 1  

A t D A B S ( F P ) / F P  

A M  = 1 
AP = 1 
M 2 0 = 1  

M 1  = 1 
13 K K K K = O  

f P  = MUl(ircK2K3**P)*K2Kl**P+l 

C T H I S   G E T S   N E G A T I V E  OR P O S I T I V E  ONE 

M i o r ) = l n o  

DO 1 M M 2 0 r M 1 0 0 , H l  
AP = K 2 K l * A P  
A M  f K 2 K 3 * A H  
PP = M U - H U * A f l  -AP+l 
B = D A B S ( f P ) / F P  
I F ( A + B I  lr10t1 

P C ( 2 )  = 3 
1 C O N T I N U E  
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DO 5 M S l r  LM 
I F HRND3+M 

N I R M  - NDHRS+H 
BAtBET(N1RM) 
FRNfG  =GAMH(NIRM) 
PINEG  =DELT(NIRM) 
N I H M 1 ~ ( N I R M * l ) * L J l  

.C JRHF 3*(MR*ND)+M 
PFRloFFR(I) 
FFII = FFI(1) 
AB=ACPH(I) 
IRM = I 

C INDICES A R E  I N  THREE DlMENSIONS 

IRMl = (IRM-l)*LJl 
DO 5 N?l,LN 
HNz(LI*M-LJ+N)*LK 
MNHS1= MN*MRMSl 
NJSh = MSND3+N 
NEGIJ 8 NIKHl+NJSN 
JSN S NDMS3*N 
IJ= 1RM1*JSN 
IF(MRMS1wLK)  6177,6177,6117 

6117 GR(IJ) P 0 ,  
GILIJ) = 0 
GR(NEGIJ)rO, 
GI(NEGIJ)=O, 
G O  TQ 5 

6177 IF(M~N)2111,617,2111 
617 1F ( M k " M S )  2111r2112r  2111 

2112  GRt 1 4 )  = 1 ,  
G I t l J )  = 0 
GR!NEGIJ)=l, 
GI(hEGIJ)=O, 
0 0  T U  5 

2111  CRMNRSs  CR ( MNRbl) 
CIMNHS=  CI(MNRS1) 
DRMhRS=  UR(HNRb1) 
I PtIURS= D I ( I 4NRb l )  

GRIJ=GHF(YH,YI,SICRMNRS,CIMVRS,DRMNRS) 
G I I J = G I F ( Y R , Y I , S I C R M N R S I C I M N R S , D I M ~ R S )  
TEMPA  =fFFHI*GHIJ + FFII*GIIJ)*AB 
CI(IJ)= ( F F R I + t i I I J - F F I I * G R I J ) * A B  
GRtlJ) = TEHPA 

3111  GRNEG =GRF(YR~IYI ISICRMNRSICIMNRSIDRMNRS,DRMN~S) 
G I N E G  = G I F ( Y R , - Y I , S , G R M N R S , C I M N R S I D I M N R S )  
GI(NEGIJ)=yBETF(FRNEG  ,GINEG ,FINE(; ,GRNEG , E A )  
GR(NEGIJ)=ALF(FRNEG  rGRNEG  rFINEG  rGINEG  rBA) 

5 CONTINUE 
8887 KKKKKZO 
9999 KKKKK=O 

M=6+ND+3 
C 

M i  = M - 1  
DO 200 KH = l,Ml 
NST = 3 
M2J = KM 
MKH=M-KH 
H2=rIKM*1 
H 2 1 M  = ( M 2 = 1 ) * M  
MHz ( M 2 1 1 )  *M+M2 

GRMMZ G R ( M M )  
C 
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G I M M ?   G I ( M r l . 1 )  
D = GRMM*GRMM * G I H M * G I M M  
U I l ” l , / D  
j F ( D - E P S ) 7 1 , 7 2 , 7 2  

c 
c 
C U N L I K E L Y   E V E N T   A ( M M ) * * 2  * B ( M M ) * * 2   T O   S M A L L  

7 1  NASM-KM 
DO 73 l,,L=lrNA 

L U V M = ( L L - l ) * M + $  
I F ( G K ( L U V M 1   - D k L T A X )  91891892  

91 I F ( G I ( L U V H ) - U E L f A X )  7 3 3 , 7 3 3 , 9 2  
73 C O N l I N U E  

733 W R I T E ( N P , 1 0 0 2 ) U E L T A X , D , H 2 J  
€ 0 0 2  F O R M A T ( 5 4 H  + * * * U N A B L E  T O  F I N D   A N   A L P H A  OR B E T A  L A R G E R   T H A N   D E L T A  1 

1 2 1 H  I N  SUt lROUTINE D E L Y  / 
2 l D H   D E L T A X =  8 G 2 0 r 8 8 1 7 H  OLD V A L U E  USED= G 2 0 , 8 r l O H   C O L U M N  
1 1 5 )  

I F ( U )  72,999872 
9 2  DO 7 7  J=l ,h(A 

N A J = ( N A - l ) * M + J  
K J = ( L L - l ) * Y * J  
G R ( N A J )  = G R ( N A J 1  G R ( K J )  
G l ( N A J )  = t i I ( N A J )  + G I ( K J )  
N A N A  = ( N A - l ) + M  + N A  
D = G H ( N A N A ) * G K ( N A N A ) * G I ( N A ~ A ) * G [ ( ~ A r ~ A ~  

77  C O N T  INUE 
A 0 0 7  F O H M A T ( 2 1 H   A D J U S T M E N T   O N   C O L U M N  1 5 )  

W R I T E ( N P , 4 0 0 7 )  M 
GO T O  7 2  

999 W R I T E ( N P n 1 0 0 9 )  
1 0 0 9  F O K M A T ( l H 0 5 0 H N t C E S S A R Y  T O  A S O R T  D U E  T O  S I N G U L A R I T Y  

S T O P  
c 
C 

7 2  M O N t Y = O  
DO 2 2 0 0  I = l p M K M  
I l M =  ( I c l ) * M  
I M  = I I M + M 2  
I M = ( l - l ) * M + M 2  
G R I M  = G R ( I M )  
G l l M  = G I ( I M )  
GAM = G R I t l * G R M M  + G I M M * G I  I N  
GA = D l I * G A H  
DE = D I I * ( ~ I I M * G R M M ~ G R I H * G I Y M )  
DO2200 J 1, M K M  
I J  = I l M + J  
H J Z  M 2 1 M + J  
BE = G I ( M J )  
A L  = G R ( M J )  
G R ( I J )  I: O R ( I J ) * G A * A L * D E * R E  
Q I ( I J )  = G I ( I J )  - G A * B E - D E * A L  

2 2 0 0  C O N T I N U E  
2 0 0  C O N T I N U E  

PIIN = GI(1) 
P l H N  = G R ( 1 )  
M i  = M.1 

K K = ( K - l ) * M + K  
GRKK = G R ( K K )  
G I K K -  G I ( K 6 )  

DO 1 0 3  K 0 2 r M 1  

PIH : G R K K + P I R N - G I K K * P I I N  
- 
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C 
C 

O N V E R G E N C E  
M O N O T O N I C ,   C O N V f R G l N G  
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A I I L N t A I ( 1 L N )  

A P P L E .   B A L J K I * A R I L N  
B I L J K l r B A I ( L J K 1 N )  

PEAR = A I I L N * B I C J K l  
C O N S 7 1  e C O N S T l * A P P L E - P E A R  

A P P L E = A R I L N + B l L J K l  
c C O N S T l ~ C O N S l l * A R I ~ N * B A L J K l o A I I L N * B ~ L J K ~  

C- C O N S T 1  t C Q N S f l  * AR(ILN) B A R f L J K l N )   A I ( 1 L N )  B A I ( L J K 1 N )  
C CONST4 = CONST4 AR(1I.N) B A I ( b J K 1 N )  * A I ( I L N )  B A R ( L J K 1 N )  

PEAR 2 A I I L N * B A L J K l  
CONsT4acONSl4*APPLE+PEAR 

C O N S T 2  = 0 
C O N S T 5  = 0 

1 5  C O N T I N U E  

-.- 

f F ( h F q K )  17, 1 7 ,  1 6  
1 6  N F K Z N F - K  

c 
DO 2 0  N T l ,   N F K  
I L N l  = I L  + N + 1 
L J N K G J L + N + K  
I L N K  = I L  + N + Y 
C J N I  e JL * N + I  
A R I L N l ~ A H ( I L N 1 )  
B R L J N K = B A R ( L J N K )  
A I I L N l = A l ( I L N I )  
B I L J N K = B A I ( L J N K )  
A R I L N K = A H ( I L N K )  
B R L J N l ? P A R ( L J N l )  
A I I L N K t A I ( i L N K )  
B I C J N l = R A I ( L J N l )  
A P P L E = A R J L N l * B n L J N K  
P E A R  = A I I L N l * u I L J N K  
P E A C H = A R I L N K * R h L J N l  
PLUM 2 A I I L N K * b I L J N l  
C O N S T 2  = CONSTZ+APPLf+PEAR+?EACH+PLUM 
A P P L E = A R I L N l * B I L J N K  
P E A H  = A J I L N l * B F ? L J N K  
P E A C H  = A R I L N K * B I L J N l  
P L U N  = A I I L N K + B A L J N l  

C O N S T 5  = C O N S 1 5  * A P P L E - P E A R - P E A C H + P L U M  
C C O N S T 5  = C O N S T ~ + A R ~ L N 1 * B I L J N K - A I I L N l * B R L J N K ~ A R I L N K * ~ l ~ J N ~ + A l ~ L ~ K *  

20 C O N T I N U E  
17 CONSTR=  CONSTR + CONSTl + C O N S 1 2  

C O N S T I  = C U N S T I  + C O N S T 4  + CONSTS 

C R ( I J K C ) =   C R ( I S K L ) =   C O N S T R  
C I ( I J K L ) =   C I ( I J K L ) F   C O N S T I  

7 C O N T I N U E  

55 C O N T I N U E  
DO 9 K 6 N F l r N 2 F 1  
CONSTR=O,O 
CONSTI = 0 , O  
I J K L  = I K L  * K 

I L F  ( L I * I  - L J + L ) * L K  
JL = ( L l * L  -LJ+J)*LK 
C O N S T 3  = 0,O 
C O N S T 6  = 0 , O  
K I N  = K + i - N F  

00 8 L =  1 r 3  

C 
2 2  D O  30  N = K 1 N   r N F  

I L N  = I L + N  
L J K l N  = JL + K + 1 - N  
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42 



I L K l N + I L + K + I W N  
L J N =   J L a N  

O N S T 1 1  : O N S T l l  + C R ( I L K 1 ~ ) * A I ( C J N ) * C $ ( I L K I N ) * A R ( L J N )  
C O N S t 5 t C O N S T 5 * C R ( I b K ? N ) + A R ( L J N ) - C I ( I L K I N ) * A ~ ( ~ J N )  

80 C O N T I N U E  
C 

C O N S T R s C O N S T R + C O N S T 4 + C O N S T 5  
C O N S T I = C O N S f l *  O N S T l O +  O N S T l l  

E R ( I J K )  w E R ( 1 J K )  C O N S T H  
E I ( I J K 1   E I ( 1 J K )  * C O N S T I  

65 C O N T I N U E  

‘60 CONT I NUE 
C 

NF2 a 2 * N F  
NF32r 3 * N P = 2  

I J K =  1 J * K  
I J K 2  = I J 2 + K  
CONSTR F 0 
CONST I o 0 

DO 100 K r N F 2 r N F 3 2  

C 

c I L =  ( I + L I - L J * L ) * L K  

C JL = ( L I * L - L J * J ) * L K  

Do 1 0 5  L = 1 1 3  

I L  = ( I * L I r L J + L ) * L K 2 N F  

JL = ( L I * L * L J * J ) * L K N F  
C O N S T 6 a  0 

N N  K - 2 * N F  2 
O N S T 1 2  = 0 

1 F t h F ~  N N )   1 0 1 s   1 0 2 8  1 0 2  
C 

1 0 2  DO 1 1 0  N N N  s N F  
I L K l N o   l L + I ( * l - N  

C O N S 1 6  5 C R ( 1 L K l N )  * A R ( C J N )  - C I ( I L K 1 N )  * A I ( L J N ,  
L J N = J L * N  

O N S T 1 2  e C R ( l L K 1 N )  A I ( L J N 1  C I ( I L K 1 N )  A R (  L J N )  
1 1 0  C O N T I N U E  

101 C O N S T R =  CONSTR * C O N S T 6  

1 0 5  C O N T I N U E  

C 

C O N S T I   C O N S T l  + O N S T 1 2  

E R ( I J K ) F  C O N S T R  
E I I I J K )  = C O N S T l  

1 0 9  C O N T I N I J E  
C 
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DCOSH(D)=COSH(U) 
PSlhH(D)=SINH(U) 

1FIT.O 
N z M e l  
IEH=O 

C COMPUTES THE REAL AND COMPLEX R O O T S  OF A POLYNOMIAL 

I F ( X C O F ( N + 1 ) ) 1 0 ~ 2 5 ~ 1 0  
1 0  I F ( h ) 1 5 r 1 5 r 3 2  
15 IER31 
20 RETURN 
25 I E R = 4  

30 IEJ312 
GO T O  20 

G O  T O  20 
32 1 F ( N - 3 6 )  3 5 a J 5 r 3 0  
35 NX=N 

N X X = N + l  
N2=1 
K J 1 G  N * l  
DO 40 C=l,KJl 
M T F  KJl-L*l 

45 X 0 8  , 0 0 5 0 0 1 0 1  
4 0  C O F ( M T ) = X C O F ( L )  

Y O =  , 0 1 0 0 0 1 0 1  
IN=O 

50 XzXO 
x o = - l o , * Y o  
Y O = . 4 0 ,  * x  
x s x o  
Y = Y O  
IN=IN+l 
GO T O  59 

55 I F I T .  1 
X P R G X  
YPH=Y 

5 9  I C T =  0 
60 UX= 0 ,  

UYSO, 
V = O  9 

YP=R,  
XTSl. ,  
U = C O C ( N + l )  
I F f U )  65r130r65 

6 5  PO 7 8  l z l r N  
L = N *  I +1 
TEMP; COFIL)  
X f 2 =  X * X T - Y * Y T  
Y T 2 =  X * Y T * Y * X T  
V=V+TEMP*YTZ 
U = U + T E H P + X T 2  
FIsI 
U X = U X t F I * X T * f E M P  
U Y = U Y - F I + Y T * T f M P  
X T = X T 2  

SUMSQ= UX*UX*UY*UY 

75 0 x 9  (V+UY-U+UX) /SUMSR 

7 0  Y T = Y r z  

IF lS IJMSQ)  7 5 r i l D r 7 5  

X=X+DX 
R Y =   - ( U * U Y * V * U X ) / S U M S Q  
Y I Y + R Y  

78  IF(DABS(DY)*DABS(DX)-~,DeO7) 1 0 0 , 8 0 1 8 0  
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I I I, I... 
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1*,5 

2 0 0  U ( N ) = O t  
G O  T O  15 

1 5  C O N T I N U E  

A A s A ( N )  
X A A = X X R + A A  
B N N = B  ( N 1 
X I U = X X I * E N N  
X I B N = X X I + B N N  
B N X I = B N N - X X I  
X X X = D A B S ( X A A )  
I F  ( X M X , L T * X X X )  G O  T O  2 0 1  
S I N H Y = D S I N H ( X A A )  
C O S h Y z D C O S H ( X A A )  
U ( N ) = ( ( S I N ~ Y / ( C O S H Y - ~ C O S (  
ti0 T O  2 0  

2 0 1  U ( N ) = X A A / X X X  
20 CRNTXNUE 

DO 20 N = 2 r N K 4 2  

DO 2 1  N = N l , N O  
X A A = X X R * C ( N )  
X X X = D A B S ( X A A )  
I F  ( X M X , L T , X X X )  G O  T O  202  
S I N H Y = D S I N H ( X A A )  
C O S H Y - D C O S H ( X A A )  
GO T O  2 0 3  

202 U ( N ) G X A A / X X X  
GO T O  2 1  

203 X l t ( k=XXI  

3 N )  ( C O S H Y - D  c o  
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K H A 7 2 = K H A T ( 2 )  
K H A T 3  = K H A T ( 3 )  
K H A T 4  = K H A T ( 4 )  
K H A T 5 = K H A T ( 5 )  
K H A T   6 = K H A T  ( 6  1 
K H A T 7 = K H A T ( 7 )  
K H A T B = K H A T ( E )  
K H A T 9 = K H A T ( 9 )  
K H A T l O = K H A T ( l O )  
K H A T 1 1 =   K H A T ( 1 1 )  
K H A T l 2 = K H A T ( 1 2 )  
K 1 =   K ( 1 )  
K 2 =   K ( 2 )  
K 3  = K ( 3 )  
K 4  = K ( 4 )  
K 5  = K ( 5 )  

K 7  = K ( 7 )  
K8:K ( 8 1 
K 9  = K ( 9 )  
M U 1  = K 9  / K H A T 1 2  
M U 2  = ( K B - K H A T l l * M U l ) / K H A T 1 2  
M U 2 S O = f l U 2 * M U 2  
MU3 = (K7-KHATlO*MUl*KHATll*MU2)/KHAT12 

MUMU = M U 2 / M U 1 S Q  
MUUU = H U 2 S Q / M U l S Q   M U 3 / M U l  
H i 1  * K H A T 1  - K 1  
H i O  = K H A T 2  - K 2  

A l l  = K 7   * K 4 / M U 1   + K S + M U M U   * ( K 6 / M U l ) * M U U U w K H A T 7  
A 1 2  G K ? * H l l  + K 8  + r (5 /F IU1 - K 6 + H U M U  - K H A T 8  
L5  = H l i  
b3 K H A T 3  - K 5   - K l * H l O  + H I l * ( K l * K l  - K 2 )  
813 E K 7 + ( H I O ~ K l + H l 1 )  + K 8 * H 1 1  + K 9  + K 6 / M U 1  - K H A T 9  
A21  = K 5  K 2 / M U l  - K 3 * M U M U   + K 4 * M U U U / M U l   - K H A T 5  
A22 E K > + H 1 1  + K 6  + K 3 / M U 1  - K 4 * H U M U  - K H A T 6  
A23 ? K 5 * ( H ~ O - K l * H l l ) + K 6 * H l i + K 7 * K 4 / M U i r K H A 7 7  
A 3 1  = K J  9 I/MU1 K I ~ M U H U * ( K 2 + M U U U ) / M U l   K H A T 3  
A32 = K 5 * H l l  + K 4  + K l / M U 1  - K 2 * f l U M U -   K H A T 4  
A33 = K 3 * ( i - i l O - K 1 * H l l )  + K 4 * H l l  + K 5  + K 2 / M U l   K H A T 5  
B l  = K H A T 1 0  - K 7 + L 3  - K 8  L 4  - K 9 * L 5  

K 6  = K ( 4 )  

M l J l S Q  = M U 1  * M U 1  

L 4  = H 1 0  - K l * H l l  

B 2  = K t i A T B - K U - K S * L 3 - K 6 * L 4 - K 7 * L 5  
83 F K H A T 6  - K 6  9 K 3 * L 3   K 4 * L 4  - K5sL.5 

C FROM CRAMERS R U L E . ? ,  
c JJ1 = D E L T A I / D p  02 = D E L T A 2 / D ,   D 3   D E L T A 3 I D  

A2233 a A22rA3J ,. A32 * A23 
A1233 = A12*A35 - A 3 2 * A I S  
A1223 z A12*A23 - A 2 2  *A13 
D : A i l * A 2 2 3 3  - A21*A1233 * A 3 1 t A l 2 2 3  

I F ( D )  1 5 r 5 , l S  
1 0 0 2  F O R M A T i l H l r 4 6 H ~ * * D E N O H l N A r O R  D FOR CRAMERS RULE IS ZERO EOJ 1 

5 W R I T E ( N P , l O O 2 )  
1 5  C O N T I N U E  

D E L T A 1  o 01*A2233 - €32*A1233 + 8 3  *A1223. 
A2133 e A2I .eA3.5  - A31+A23 
A1133 n A l l * A 3 3  - A31cAi3  
A1123 = A 1 1 + A 2 3  - A21*A13 
D E L T A 2  s -8 i *A2133  * 82 * A1133 - 83 *A i123  
A2132 = A21*A32 - A31*A22 
A1132 o A l l  A32 - A 3 1 + A 1 2  
A1122 = A i 1 + A 2 2  - A Z l + A 1 2  
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These programs also use the standard IBM subroutine 
DPRQD, as given in IBM System /360 Scientific Subroutine 
Package (360A-CM-03X) Version I11  Programmer's  Manual, 
IBM publication H20-0205-3, Fourth Edition. 
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C 
C 
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DO 200 J=l  t NFTW 
X A C = J - l  
E T A l = E T A * X A C  
XAC=FAC+XAC 
S I N F A C =   S . I N ( X A C )  
COSFAC=  ,COS(XAC)  
DO 100 I = l r N R  

C A L L   V E C T O R  (I) 
I F  (NSW.NE.0) GO T O  50 

T X   ( I v J 1 1 1   = T E R M ( Z )  
T X   ( I ~ J t 2 1   = T E R M ( 3 )  
T X  ( I T J T ~ )  = T E R M ( $ )  
T X  ( I r J t 4 )  = T E R M ( 5 )  
T X  ( I T J T ~ )  = T E R M ( 6 )  
T X  (11Jt6) = T E R M ( 8 )  
T X  ( I T J T ~ )  z T E P M ( 9 )  
T X   ( I T J I B )   = T E R M ( 1 0 )  
T X  ( I v J t 9 )  = T E R M ( 1 1 )  
T X  ( 1  t J t l O ) = T E R M (  12)  
T X   ( T ~ J T L I ) = T E R M ( Z ~ )  
T X   ( I t J t 1 2 ) = T E R M ( 3 9 )  
T X   ( I T J T ~ ~ ) = T E R M ( ~ O )  
T X   ( I T J T ~ ~ ) = T E R M ( ~ ~ )  
T X   ( I v J i 1 5 ) = T E R M ( 4 3 )  
T X   ( I q J t 1 6 ) = T E R f l ( 4 4 )  

9876 F O R M A T  ( '  ' / ( '  ' .10G12;4) )  
C X I N T E R ~ I ~ ~ A N U ~ I T L ~ * X M U N U ~ I T K ~ + A W ~ I T L ~ * X M U W J ~ I T K ~ + A P H I ~ I T L ~ *  
C 1 XMUPHJ(ITK)+APSI(ITL)*XMUPSI(ITK) 

50 X I N T E R ( I ) = A N U ( I T L ) ~ X M U N U ( I T J T K ~ + A P H I ( I T L ) * X M U P H J ( I T J T K )  
C 100 XINTR1(I)=ANU(ITL)~XLMBNU(I,K)+AW(I~L)*X~AMWJ(I~K)+APHI(I~L)* 
C 1 XLMPHJ~I~KI+APSI(ITL)*XLMPSJ(ITK) 

100 X I N T R ~ ~ I ~ ~ A N U ~ I T L ~ * X L M B N U ~ I T J T K ~ + A P H I ~ I T L ~ * X L M P H J ~ I T J T K ~  
NRPTS=NR 

C I J I = S I N F A C * Z ( N R ) + C I J I  

C I J R = C I J R + C O S F A C * Z ( N R )  
GO T O  1 5 0  

C A L L   Q T F G   ( X I N T E R t Z t N R P T S )  

I F  ( M o E Q o l e A N - D o L . E Q . K )   G O   T 0 . 1 2 0  

120 C I J R = C T J R + Z ( N R )  
150 C A L L   Q T F G ( X I N T R L T Z T N R P I S )  

D I J I = S I N F A C * Z ( N R ) + D I J I  
200 D I J R = C O S F A C * Z ( N R ) + D I J R  

N S W = l  
R E T U R N  
E N  0 
S U B R O U T I N E   V E C T O R  (I) 

C I M P L I C I T   R E A L * 8 (   A - H t 0 - Z )  
C R E A L * 8  NUIMBIKMTMTTMODFRTMBAR 

R E A L   M U T N B T K M T M T T M O D F R T M B A R  
I N T E G E R   O U T  
D I M E N S I O N   X I B A R O ( 1 7 )  
D I M E N S I O N   Z B A R A f   1 7 ) + C B A R (  17) t P S 1 t  17) 
D I M E N S I O N   M O D F R ( 3 )  
D I M E N S I O N  P H I ( ~ ~ ) , X L B A R Z ( ~ ~ ) T M B A P ( ~ ~ ) , E B A R ( ~ ~ )  
COMMON COSASICOSQASTRMUSQTMUTASTCTTCTSQTSINASTSINETATRMUMWBT 

1 XMUCSETSINZATCOSZATRMUCSA 
COMMON / A I /  T E R ~ ( ~ ~ ) T A N U ( ~ ~ ~ ~ ) T , A W ( ~ ~ ~ ~ ) T ~ ~ H I ~ ~ ~ T ~ ) T A ~ ~ ~ ~ ~ T ~ ~ T  

1 A P S I (  1 7 ~ 3 )  
COMMON / A 4 /  I N T O U T T M B T R T ~ H T M T T M O D F R T N R T N F T  X I B A R O T C B A R T Z B A R A T  
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1 P H I ~ X L B A R Z T M B A R ~ E E A R T P I ~ E T A ~ ~ E T A  
COMMON /A5 /  XBAR ( 17) 

COSETA= Cf lS(ETA1 
S I N E T A =   S I N ( E T A 1  

987.6 FORMAT ('0'1615.7) 

AO=PHI I1  )+ZA(  ETA91 1 
XBMSEA=XBAR( I )+MU*SINETA 
C A L L   S E R I E S  ~ I ~ J ~ N C O O E I M T ~ X B M S E A I V I A O , C L ~ A S L O P ~ C M ~ C O ~ C ~ ~ A T C D A ~  
SINAO=  S IN(AO)  
COSAC= COS(A0)  
C L  CDAzCL-CDA 
CDCLA=CO+ASLOP 
SIGD=CLCDA*SINAO-CDCLA*COSAO 
SIGL=CL*COSAO+CD*SINAO 
VO= SCRT(RMUMWS*RMUMWB+XMUCSE*XMUCSE) 
GAML=CLCDA*COSAO+CDCLA*SINAO 
GAMD=CL*SINAO-CC*COSAO 
DELTA=CBAR ( I )*CM-ZBARA( I )*CL 
DELTAP=CRAR( I )*CMA-ZBARA( I ) * A S L D P  
PICBAR=P  I*CBAR( I) 
SIGLE=2.*SIGL 
ZBAMLZ=ZBARA( I )-XLBARZ( I )  
COSASE=COSAS*COSETA 
VOKM=KM*VO 
OCKV=CEAR( I )*VOKM 

TERM ( 1) =TFRM ( 10 1 *VI3 
T E R M ( Z ) = T E R M ( l ) ~ S I G D  
TER 'A(3 )=   COS(PHI (1 ) )  
T E R M ( 4 ) =   S T N ( P H I ( 1 ) )  
T E R ~ ( 5 ) = S l G D * ( Y U * C O S Z A * C O S A S E - Z 6 A ~ l L Z * C O S A O ~ ~ S I G L 2 * ~ Z B ~ M L Z *  

TERM(61=-2.*MBARII)*EBAR(I)*TERM(4) 

T E R ~ ~ ~ ( 8 ) = T E R M t 7 ) * C O S A O * C B A R (  I) 
TERM(9)=TERt~(lO)*(SIGD*COSAO-SIGL~*SINAO) 
TERM( 11 )=ZBARA( I ) 

TERM(13)=TERM(l )*GAML 
TERMf 14 )=MU*COSASE 
TERM(  15)=TERM(14)*COSZA 

TERM( 10 I = .  5*OCKV 

1 S I N A f l ~ M U * S I N Z A * C O S A S E ) + P I C B A R / 2 . * C O S A O  

TERMt7)=PI/4.*OCKV 

T E R M ( 1 2 ~ = T E R M ( 1 O ) * ( S I G D * S I N A O + S I G L 2 = C O S A O ~  

TERM(  16)=ZBAt!LZ*COSAO 
T E R t ~ ( 1 7 ) = T E R Y ( 1 5 ) - T E R M (  16)  
TERM(  lS)=G4ML*TERM( 17 )  
TERM(19)=TERP(14)*SINZA 
TERM (20 )=ZBAuLZ*S I N 4 0  

TERM(22)=PT/2.O*CRAR(I )  
T E R M ( 2 1 ) = 2 . 0 ~ G A M D ~ ( T E R ~ ( 1 9 ) - T E ~ M ( 2 0 ) )  

T E R ' . ~ ( 2 3 ) = T E R f ~ ( 2 2 ) ~ S I N A O  
T E R ~ ~ 1 ( 2 4 ) = T E R M ( l R ) + T E R M ( 2 1 ) " ( 2 3 )  
T E R M ( Z 5 ) = 2 . 0 * ~ B A R ( I ) * E B A R ( I )  
T E R r ~ ( 2 6 ) = - T E R M ( 2 5 ) a T E R M ( 3 )  
T E R M ( 2 7 ) = O C K V * C B A R ( I ) * P 1 / 4 . 0  

TERY(P9)=TERv(27)*ZBARA(I) 
T E R M ( 2 8 ) = T E R ~ f 2 7 ) ~ S I N A O  

TERM(30)=TERt*+( l O ) * ( G A F L * C O S A 0 + 2 . * G A ~ l D * S I N A O I  
T E R ~ ~ ~ 3 l ~ ~ T E R ~ ~ l O ~ ~ ~ - G A ~ ~ ~ L * S I ~ A O + Z ~ * G A ~ ~ l D ~ C ~ S A O ~  
TERM ( 32  ) = 2  O*OELTA 
TERM( 3'3 )=OELTAP*COSZA 
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C 

C 
C 
C 

C 
C 

C 

C 

TERM(341=TERM(321*SINZA 
TERM(351=DELTAP*COSAO 
TERM136)=TERM(32)*SINAO 
T E R M ( 3 7 ) = T E R M ( 3 3 ) + T E R M ( 3 4 )  
T E R M ( 3 8 ) = T E R M ( 3 5 ) + T E R M ( 3 6 )  
TERM(39)=TERM(l )*DELTAP 
T E R M ( 4 0 ) = T E R M ( l O ) * ( T E R M ( l 4 ) * T E R M ( 3 7 ) - Z B A M L Z * T E R M { 3 8 )  +TERM(22)*  

TERM(41)=2.0*XIRARO(I )  
T E R M ( 4 2 ) = T E R M ( 4 1 ) * T E R M ( 4 )  
TERM ( 4 3  )=TERM ( 10 1 *TERM( 38 
TERM(44)=TERM(lO)*I-DELTAP*SINAO+TERM(32)*COSAO) 
RETURN 
ErJ  D 

1 Z B A R A ( I 1 )  

SUBROUTINE  QTFG  (YTZINDIM) 
I M P L I C I T  REAL*8(A-HvO-Z) 
D IMENSION Y (  1) rZ( 1) 
COMMON / A 5 /   X I 1 7 1  

INTEGRATION @Y GENERAL  TRAPEZOIDAL  RULE 
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C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

SUBROUTINE TO COMPUTE C L I F T = L I F T   C f l E F F I C I E N T  

ASLOP=LIFT CURVE SLODE 
CMOME=MOMENT COEFFICTENT 
CDRAG=DRAG COEFFICIENT 

CDA=O. 
CMA=O . 
CL I FT=O. 
ASLOP=O. 
CMOME=O. 
CDRAG=O. 

TkIPI=2.*3.1415926 
I F   ( A P H I J m L T o - T W P I )  STOP 1 0 0  
I F  (APHIJ.GT.2.*3.1415926)  STOP 1 0 1  

1 8 0  NEG=1 
EMIJ=EMT*  ABS(U1 
SQT= S Q K T ( l . - E M I J * E M I J )  
Cl=l "E'4 I J 
C 2 = = 2 2 6 5 9 * C l  

1 7 2   I F   ( A P H I , J + 3 . 1 4 1 5 9 2 6 )   1 7 3 9 1 8 1 ~ 1 8 2  
1 7 3  Af'HIJ=APHIJ+3.1415926*2* 

GO TO 1 8 6  
1 8 2   I F ( A P H I J - 3 . 1 4 1 5 9 2 6 )   l e 4 ~ 1 8 6 9 1 8 3  
1 8 3  APHIJ=APHIJ-3.1415926a2. 

GO TO 1 8 1  
1 8 4   I F ( A P H I J 1   1 8 1 r l @ h r 1 8 6  
1 8 1   A P H I J = - A P H I J  
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NEG=-1 
186  IF(APHIJ-C2)  -1851187~187 
185  ASLOP=5.7296/SQT 

CLIFT=ASLOP*APHIJ 
CDRAG=.006+. 1313l*APHIJ*APHIJ 
CMOME=1.4324*APHIJ/SQT 
CDA=. 26262aAPHI J 
CMA=lO4324/SQT 
GO TO  250 

187 IFIAPHIJ-.34906) 1899191~191 
189 CLIFT=.29269*C1+(1.3*EMIJ-.59)*APHIJ 

CMOME=CLIFT/(SQT*(.48868+.90756*EMIJ)) 
C2=(.12217+.22689*EMIJ)*SQT 
CLIFT=CLIFT/C2 
ASLOP=(lo3*EMIJ-*59)/C2 
CMA=(1.3*EMIJ'.59)/((.48866~+o~O756*E~IJ~*SQT) 
GO TO  210 

193 S= SIN(APHIJ1 
191 IF(APHTJ-2.7402) 193~195,195 

S2= SIN(Z.*APHIJI 
S3= SIN(3.*ApHIJ) 
S4=  SIM(4o*APHIJ) 
C L I F T ~ ~ ~ 080373~S+1~04308*S2~~011059*S3+oO23127~S4~/SQT 
C M O Y E ~ ~ ~ ~ 0 2 8 2 7 * S + o 1 4 0 2 ~ ~ S 2 ~ ~ 0 0 6 2 2 * S 3 + ~ 0 1 0 ~ 2 ~ S 4 ~ / S ~ T  
C= COS ( APHI J 1 
C2= COS(2.*APHIJ) 
C3= COS(3.*APHIJ) 
C4= COSI4.*APHIJ) 
ASLOP=~.080373*C+2~08616*C2-~033177*C3+.092508*C4~/SQT 
CDRAG~~1.1233-.C29894*C-1~006@3*C2+.003115*C3-.091487~C4~/SQT 

GO TO .240 
C M A = ( - . 0 2 8 2 7 ~ C + . 2 8 0 4 4 * C 2 - o 0 1 8 6 6 * C 3 + . 0 4 0 4 ~ ~ C 4 ) / S Q T  

195  IF(APFIJ-3o00201 1 5 7 ~ 1 9 9 ~ 1 9 9  
197 CLIFT=-(o4704+.10313*APHIJ)/SQT 

ASLOP=-,10313/SQT 
CMOM€=-(.4786+.02578*APHIJ)~SQT 
CMA=-.02578/SQT 
GO TO  210 

.199 IFfAPHIJ-3.1415926) 2009200~260 
200 CLIFT=(-17.550+5.5864*APHIJ)/SQT 

ASLOP=5*5864/SQT 
CMOME=(-12.5109+3.9824*APHIJ)/SQT 
CMA=3.9824/SQT 

210 C= COS(APHIJ1 
C2= COS(2.*APHIJ) 
C3= COS(3.*APHIJ) 
C4= COS(4.*APHIJ) 
CDRAG-I 1.1233-• C29894*C -1.00603*C2 
1  +o003115*C3 -. 091 4R7*C4 1 /SQT 

240 S= SIN(APH1J) 
S2= SIN(2.*APHIJ) 
S3= SIN(3.*APHIJ) 
S4= SIN(4.*APHIJ) 
CDA=( .029894*S +2.01206*52 - 0  009345*S3 

1 +. 36595*S4 1 /SQT 
250  IFtYEG)  2551255,260 
255  CLIFT=-CLIFT 

CMOME=-CMOME 
APHIJ=-APHIJ 
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CDA=-CDA 
260 CONTINUE 

c .  
300 CONTiNUE 

RETURN 
END 
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APPENDIX B 

Listing of Computer Program for 
Determining Characteristic Modal 

Functions 





C 
1 
2 
3 
4 
5 
6 
7 
8 
9 

C 
C 
C 

10 
11 
12 

C 
C 
C 

13 
14 
15 
16 199 
17 
18 
19 
20 
21  
22 
23 
24 
2 5  
26 
27 
28 
29 
30 

C 
C 
C 

3 1  
32 

C 
C 
C 

33 
34 
35 
36 

C 
C 
C 

69 

READ PROGRAM CONTROL  COKSTANTS 

READ ( 5 ~ 9 9 9 1 )  N T I T  
WRITE (699992)  N T I T  
READ(5,2)   NTKSTNQTNLAVB 

PROGRAP  CONSTANTS 

ZERO=CWPLX(O.TO.) 
ONE = CMPLX,( 1.~0.) 
DO 199 I = l r 2 1 6  
DUM( I )=ZERO 
NP=2*N+1 
NAUSEC = 3* (2*N+1)  
NAUSER = 3*(e(Z*N+l)  
NBUSEC=NAUSEC-1 
NBUSER-NAUSER-1 
NAOIC = 41 
NADIR = 4 1  
NBDIC = 41 
NBDIR = 41 
THREEN=3*N 
K T H = I C O L ( N T N Q )  
LTH=IROW(N,NSI 
L T H M l z L T H - 1  
L T H P l = L T H + l  ' 

I N P U T  PRCGRAM VARIABLES 

READ (5,9871) ( ( ~ A ( I T J ~ K ) T B ( I T J ~ K ) T K = ~ T N P ) ~ J = ~ T ~ ) T I = ~ ~ ~ )  
W R I T E ( b r 9 8 7 4 )  ~ ~ ~ I ~ J ~ K ~ A ~ I T J T K ~ ~ B ~ I ~ J I K ~ , K = ~ ~ N P ~ ~ J = ~ ~ ~ ~ T I ~ ~ T ~ ~  

I T E R A T E  ON THE NUMBER OF ROOTS, NLAMB 

DO 1000 I Z Z = ~ T N L A M B  
EVALUE( IZZ)=ZERO 
READ  (5,98771  EIGENC 
WRITE (6,98821 EIGENC 

D E F I N E  A NEW T  ARRAY  AND  C  VECTOR 



3-7 
38 
39 
4 0  
41  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
4 9  

5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  

5 7  
5 8  
5 9  
60 
6 1  
6 2  
6 3  
64 
6 5  
6 6  
6 7  
6 8  
6 9  
7 0  
71 
7 2  
7 3  

7 4  
7 5  
7 6  
77 
7 8  
79 
8 0  
8 1  

CALL  MAKET ( T I  
WRITE  (6 ,98861 ((T(M,II),II=l,NAUSEC),M=l,NAUSER) 

9 8 8 6  FORMAT ( / ' O T   M A T R I X ' / ( ' 0 ' , 2 E 1 6 . 7 r 5 X 1 2 f 1 6 . 7 r 5 X ~ Z E l 6 o 7 ) )  
WRITE  (6 ,9881)   LTH 
CALL REMV ( T ~ T S ~ L T H I K T H ~ N A U S E C ~ N A U S E R ~ N A D I C ~ N A O I R ~ N B D I C ~ N B D I R ~  
I F  (LTH.EQ.1) GO TO 1 2  
DO 1 0  I 1  = l , L T H H l  

1 0   C ( I I ) = - T ( I I , K T H )  
I F  (LTHoEQoNAUSER) GO TO 1 6  

M=I 1-1 
1 2  DO 14 I I=LTHPl ,NAUSER 

1 4   C ( M ) = - T ( I I , K T H )  
16 WRITE  (6,9875)  (C(V),M=l,NEUSER) 

C 
C SOLVE  THE.RESULTING  EQUATIONS FOR EPS 

CALL CMAT(TS,NeUSER,C,DET) 
WRITE  (6 ,9875)   (CIH) ,M=l rNBUSER)  
WORKl=REAL(DET) 
WORKZ=AIHAG(DET) 
I F  ~ H O R K l ~ E ~ o O o o A N D ~ W O R K 2 . E 6 . 0 . ~  WRITE ( 6 , 9 8 7 6 )  

1 0 0 0  CONTINUE 
STOP 

C 
C 
C 

2 FORMAT(812r2E14 .7 )  
9 8 7 1  FORMAT (4E14.73  
9 8 7 2  FORMAT (2E14.7)  
9 8 7 3  FORMAT [ l H l / ( l H O ~ I 5 r 2 E 1 6 . 7 ) )  
9 8 7 4  FI3RMAT ( ' O ' r 3 1 5 r 4 E 1 6 . 7 )  
9 8 7 5  FORMAT ( ' 1 ' / ( ' O 1 ~ 2 E l 6 ~ i ' ) )  
9 8 7 6  FORMAT ( ' O ' r ' V A L U E  OF DET I S  Z E R O ' )  
9 8 7 7  FORMAT (2E13.7)  
9 8 8 1  FORMAT (/ 'OEXTRACTED ROW ' 9 1 3 )  
9 8 8 2  FORMAT (/ 'OTHE  STARTING  EIGENVALUE I S   ' 9 2 E 1 6 . 7 )  
9 9 9 1  FORMAT ( 2 0 A 4 1  
9 9 9 2  FORMAT ( ' l 8 r 2 0 X , 2 0 A 4 )  

END 
SUBROUTINE  PAKET ( T I  
COMPLEX A,~ICICLAM,CMPLX,CONJG,T*CZTCY 
DIMENSION T(41r41)rA(3~3,12)rB(3,3,12) 
COMMON A,B,CLAP,N,NP 

C 
C CLAM I S  THE  EIGENVALUE 
C 

NADDl=N+ l  
C=CMPLX(O.r2.) 
DO 2 0   M = l r N P  
CZ=M-NADDl 

I M = ( H - 1 ) * 3  +l 
I MAD2=I M+3 - 1 
DO 20  K=l ,NP 

CY=CLAM+C*CHPLX(C2,0,) 
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82 
ci;K-NAoDi"".. 

83 Ct=CLAM+C*CMPLX(ClrO.) 
84 IK=(K-1)*3 +1 
85 I KA02- I K + 3  - 1 
86 IF(K-M)25~30,35 
87 25 LZ=M-K+l 
88 00 27 11 = I M T ~ N A D Z  
89 I " = M O D ( I I T ~  
90 IF(IMM*EP*O)IHM=3 
91 00 27 JJ= I K T I K A O L  
9 2  IKK=MOO(JJ,3 f 
93 IFCfKK.EQ~O)IKK=3 

95 Go TO 20 
96 30 DO 32 I = I M I I M A D Z  
97 LMM=MOD( 193 1 
98 IF( IHM.EQ.01 fMM-3 
99 DO 32 J=IKpIKADZ 
100 IKK=MOD(JT~ I 
101 IF(IKKoEQ*O)IKK=3 
102 32 T ~ I ~ J ) ~ ~ Y * A ~ I M ~ T I K K ~ ~ ~ ~ B ~ I M M T I K K T ~ ~  
103 00 34 NZ=IM,IMADZ 
104 34 T ~ N Z , N Z ~ = T I N Z T N Z ~ + C Y * C Y  
105 GO TO 20 
106 35  LS=K-M+l 
LO7 DO 38 IX=IMIIMADZ 
108 IHM=MOD(IX,3 1 
109 IF(IHMoEQ.011MM=3 
110 00 38 JX=IK,IKADZ 
111 IKK=MOD(JX,3 1 
112 IF( 1KKoEQ.O) IKK23 
113 38 T ( I X ~ J X I = C Z * C O N J G ~ A ~ I M M T ~ K K I L S ~ ) + C O N J G [ B ~ ~ M M ~ ! K K ~ L S ~ ~  
114 20 CONTINUE 
115 RETURN 
116 END 

118 COHPLEX*R A ( N A O I R ~ N A D I C ~ ~ B ( N B D I R T N B O I C )  
119 I1=0 
120 DO 2 I I = l r N A U S E R  
121 IF[II*EQ.I) GO TO 2 
122 11-1 1+1 
123 Jl=O 
124 00 1 JJ=LTNAUSEC 
125 I F  (JJ-EQIJ)  GC. TO 1 
126 J1=J1+1 
127 6(1l~Jl)=A(fIrJJ) 
128 1 CONTINUE 
129 2 CONTINUE 
130 RETURN 
131 END 
I32  SUBROUTINE  CMaT(A,NvYvDET) 

94  27 T ( I I ~ J J ~ = C Z * A ' ~ I M H I I K K ~ ~ Z ~ + B ( I M M T I K K ~ L Z )  

117 SUBROUTINE REMV ( ~ ~ B ~ I ~ J T N A U S E C , N A U S E R T N A D ~ C , ~ A U ~ R , ~ ~ D I C , N ~ D I R ~  

C CNAT SUBROUTINE F I L E  NUMBER 310-4*505 
C UNfVERSfTY C F  RCCHESTER COMPUTING CENTER 
C A BECOMES AINVERSE, YOFAX=Y BECOMES XI DET IS DET A- 
C MATEQ SOLVES AX=Y FOR X ,  COMPUTES A INVERSE, AND CALCULATES THE 
C DETERMINANT  USING A V A R I A T I O N  OF GAUSSIAN  ELIMINATION.  
t P J EBERLEIN,  REVISED B Y  C TEAGUE FOR / 3 6 0  
C USER SHOULD CHECK DET IMMEGIqTELY FOR SINGULARITY 
C KEYPUNCH IS 029 
C CF(6T COMPLEX*8 VERSIPN OF HATEQ 1360 F I L E  NO. 310.40500 
C A = COHPLEX*8.  MATRIX TO BE INVERTED 
C N = ZNTEGER*4r  ACTUAL S I Z E  OF MATRIX A 
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C . Y  = COMPLEX*8*  VECTCR T O .  SOLV AX=Y- 
C DET = COMPLEX*8r  VARIABLE FOR DETERMINANT OF A 

1 3 3   I M P L I C I T - C O N P L E X  (A-ti10-2) 
134 REAL*4  CABS 
135 O I H E N S I O N   A ( 4 1 r 4 1 ) r Y ( 4 1 )  
136 OIMENSION  ICH.G(41)  
137 DET- 1 . 0 
138 DO 118 K = l r N  
139 A M X  = A I K t K )  
140 I MX=K 
14 1 DO 100 I = K T N  
142 I F ( C A B S ( A (   I + K )  ).LE.CABS(AMX) 1 GO TO 100 
143 A M X  = A ( L 9 K )  
1 4 4  I M X = I  
145 100 CONTINUE 
146 I f ( C A B S ( A Y X 1   . G T - O o l E - 7 0 )  GO TO 102 
147 D E T = O e O  
1 4 8  GO TC 124 
149 102 IF (1MX.EQ.K) GO TO 106 
150 DO 104 J = l * N  
1 5 1   T E H P = A ( K * J )  
1 5 2   A ( K * J ) = A ( I M X * J )  
153 104 A ( I M X * J ) = T E M P  
1 5 4   I C H G ( K ) = I M X  
1 5 5  TEMP=Y ( K  I 
156 Y ( K ) =   Y f I M X )  
157 Y ( I H X I =  TEMP 
1 5 8  DET=-DET 
159 GO TU 108 
160 106 ICHG(K)=K 
16 1 1 0 8  DET=DET*A(K*K)  
1 6 2   A ( K T K ) = ~ * O / A ( K I K )  
1 6 3  DO 110 J = l t N  
164 IF ( J e N E o K )   A ( K I J ) = A ( K , J ) * A ( K * K )  
1 6 5  110 CONTINUE 
166 Y ( K )  = Y ( K I * A ( K * K )  
167 00 114 I = l * N  
1 6 8  00 112 J = l * N  
169 I F .  (1.EQ.K) GO TO 114 
170 IF ( K o N E o J )  A ( I t J ) = A ( I * J ) - A ( I * K ) * A ( K 1 J )  
171 112 CONTINUE 
1 7 2  Y (  I )  = Y ( I ) - A (   I r K ) * Y ( K )  
173 114 CONTINUE 
174 00 116 I = l * N  
1 7 5  I F  f1.NE.K) ~ ~ ~ ~ K ) = - A ( I ~ K I * A ( K T K I  
176 116 CONTINUE 
177 118 CONTINUE 
1 7 8  DO 122 K = l r N  
179 L=N+l-K 
180 K I = I C H G ( L l  
1 8 1  I F  ( L o E Q e K I )  GO TO 1 2 2  
1 8 2  DO 120 I = l r N  
1 8 3  TEMP '= A(1.L) 
1 8 4  A ( I * L )  = A ( 1 r K I )  
1 8 5   1 2 0   A ( I r K 1 )  = TEMP 
186 122  CONTINUE 
187 124 RETURN 
1 8 8  END 
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